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A. Appendix to Section 2: Theory

Proposition A.1 Suppose that firms have a possibility of hedging foreign exchange risk by ac-

quiring ht ≥ 0 units of a financial derivative contract with a payoff of Xt+1 ≥ 0 and a price of

Et[Mt,t+1Xt+1] to be paid at time t. The firm always chooses ht = 0.

The intuition behind this result is straightforward. Hedging effectively plays a role of investment,

and the firm only gets the payoff Xt+1 from this investment in good (survival) states, while paying

the market price at time t to get the payoff in all states. Thus, hedging is just a transfer of funds

from shareholders to debt–holders, and firms optimally decide to minimize this transfer.1

Proof of Proposition A.1. The maximization problem is

max
ht

{
− Et[Mt,t+1Xt+1]ht

+ Et

[
Mt,t+1

∫
Ωt+1Zt+1>Bt+1(Bt)−ht(1−τ)Xt+1

(Ωt+1Zt+1 − Bt+1(Bt) + ht(1− τ)Xt+1)φ(Zt+1)dZt+1

]}
.

The derivative of this objective function with respect to ht is given by

−Et[Mt,t+1Xt+1] + (1− τ)Et

[
Mt,t+1Xt+1

(
1− Φ

(
Bt+1(Bt)− ht(1− τ)Xt+1

Ωt+1

))]
< 0 ,

and hence ht = 0 is optimal. Q.E.D.

1There is ample evidence that firms often choose not to hedge their foreign currency risk. See, for example, Bodnár
(2006) who shows that only 4% of Hungarian firms with foreign currency debt hedge their currency risk exposure.
Furthermore, according to Salomao and Varela (forthcoming): “data from the Central Bank of Peru reveals that
only 6% of firms borrowing in foreign currency employ financial instruments to hedge the exchange rate risk, and a
similar number is found in Brazil.” Du and Schreger (2017) also provide evidence that firms do not fully hedge their
currency risk exposures. See also Niepmann and Schmidt-Eisenlohr (2019), Bruno and Shin (2017). While it is known
that costly external financing makes hedging optimal (Froot, Scharfstein, and Stein, 1993; Hugonnier, Malamud, and
Morellec, 2015), Rampini, Sufi, and Viswanathan (2014) show both theoretically and empirically that, in fact, more
financially constrained firms hedge less.
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Proof of Theorem 2.1. Firm’s problem is to maximize

∑
j

Et

[
Mt,t+1

[(
1− (1− ρ)

(
Bt+1(Bt)

Ωt+1

)`)
(1 + c)Ej,i,t+1

]]
Bj,t(1− q(j))

+ Et

[
Mt,t+1

[
−Bt+1(Bt)

(
1−

(
Bt+1(Bt)

Ωt+1

)`)
+ Ωt+1`(`+ 1)−1

(
1−

(
Bt+1(Bt)

Ωt+1

)`+1
)]]

Differentiating, we get from the standard Kuhn–Tucker conditions that borrowing only in dollars

is optimal if and only if

Et

[
Mt,t+1

[(
1− (1− ρ)

(
Bt+1(Bt)

Ωt+1

)`)
(1 + c)Ej,i,t+1

]]
(1− q(j))

+ Et

[
Mt,t+1

[(
−`(1− ρ)

(
Bt+1(Bt)

Ωt+1

)`−1

Ω−1
t+1

)
(1 + c)E$,i,t+1(1 + c(1− τ))Ej,i,t+1

]]
B$,t(1− q($))

− (1 + c(1− τ))Et [Mt,t+1Ej,i,t+1]

+ Et

[
Mt,t+1(`+ 1)

(
Bt+1(Bt)

Ωt+1

)`
(1 + c(1− τ))Ej,i,t+1

− `
(
Bt+1(Bt)

Ωt+1

)`
(1 + c(1− τ))Ej,i,t+1

]
≤ 0

for all j with the identity for j = $. This inequality can be rewritten as

Et[Mt,t+1Ej,i,t+1]((1− q(j))(1 + c)− (1 + c(1− τ)))

≤ Et

[
Mt,t+1

(
Bt+1(Bt)

Ωt+1

)`
Ej,i,t+1

]
((1− ρ)(1 + c)[(1− q(j)) + `(1− q($))]− (1 + c(1− τ)))

At the same time, for the dollar debt we get

Et[Mt,t+1E$,i,t+1]((1− q($))(1 + c)− (1 + c(1− τ)))

= Et

[
Mt,t+1

(
Bt+1(Bt)

Ωt+1

)`
E$,i,t+1

]
((1 + `)(1− ρ)(1 + c)(1− q($))− (1 + c(1− τ)))

implying that

B$,t(1 + c(1− τ)) =

 Et[Mt,t+1E$,i,t+1]

Et

[
Mt,t+1E$,i,t+1Ω−`t+1

]
`−1

,
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and we get the Kuhn–Tucker conditions

q̄(j, $)

q̄($)

Et[Mt,t+1Ej,i,t+1]

Et

[
Mt,t+1Ω−`t+1Ej,i,t+1

] ≤ Et[Mt,t+1E$,i,t+1]

Et

[
Mt,t+1E$,i,t+1Ω−`t+1

] ,
and the claim follows. Q.E.D.

The next lemma formulates the optimality in terms of the pricing kernel Mk
t,t+1 = M$

t,t+1Ek,t,t+1

in a different currency k.

Lemma A.2 Issuing in dollars is optimal if and only if

q̄(j, $)

q̄($)

Et[M
k
t,t+1Ej,k,t+1]

Et

[
Mk
t,t+1Ω̃−`t+1Ej,k,t+1E`$,k,t+1

] ≤ Et[M
k
t,t+1E$,k,t+1]

Et

[
Mk
t,t+1Ω̃−`t+1E

1+`
$,k,t+1

]
for all j.

Proof. The currency–k price of debt denominated in currency j satisfies

δj(Bt, k) = Et[M
k
t,t+1 (1− (1− ρ)Φ(Ψt+1(Bt))) (1 + c)Ej,t+1/Ek,t+1]

where Mk
t,t+1 = M$

t,t+1Ek,t,t+1 is the pricing kernel in currency k.

Let now Ṽt = Vt/Ek,t be the firm equity value in dollars and similarly Ω̃ = Ω/Ek and B̃t+1 =

Bt+1/Ek,t+1 is the debt payoff denominated. Then,

Ṽt = Vt/Ek,t = Ω̃tZt + max
Bt

{
N∑
j=1

δj(Bt, k)Bj,t(1−q(j))+Et[M
k
t,t+1 max{Ṽt+1 − B̃t+1(Bt), 0}]

}

and thus nothing changes. Thus, repeating the above argument, dollar debt is optimal if and only

if

q̄(j, $)

q̄($)

Et[M
k
t,t+1Ej,k,t+1]

Et

[
Mk
t,t+1Ω̃−`t+1Ej,k,t+1E`$,k,t+1

] ≤ Et[M
k
t,t+1E$,k,t+1]

Et

[
Mk
t,t+1Ω̃−`t+1E

1+`
$,k,t+1

]
Q.E.D.

Proof of Theorem 2.3. follows from the following known result.
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Lemma A.3 Suppose that f, g are monotone decreasing and bounded. Then,

Covt(f(X), g(X)) ≥ 0

for any bounded random variable X.

We need to compute

IRPt =
ertCovt(Mt,t+1,Pi,t,t+1)

Et[Pi,t+1]
.

For simplicity, we will assume that all idiosyncratic shocks are identically zero. Define ãt = − logSt.

Our goal is to prove that

IRPt + 1 =
Et[Mt,t+1Pi,t,t+1]

Et[Mt,t+1]Et[Pi,t,t+1]

=
Et[e

(φ+γ)ãt+1 ]

Et[eγãt+1 ]Et[eφãt+1 ]

is monotone increasing in φ. We have

∂

∂φ
log(IRPt(φ) + 1) =

Et[e
ãt+1(φ+γ)ãt+1]

Et[eãt+1(φ+γ)]
− Et[e

ãt+1φãt+1]

Et[eãt+1φ]

Making a change of measure dP̃ = eãt+1φ/Et[e
ãt+1φ], we can rewrite the required inequality as

Ẽt[e
γãt+1 ãt+1]

Ẽt[eγãt+1 ]
> Ẽt[ãt+1] ,

which is a direct consequence of Lemma A.3. Q.E.D.
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B. Appendix to Section 3: Evidence from Forward–Looking Mea-

sures

Table B.1. QRP, IRP, debt currency choice: Sample restricted to banks

(1) (2) (3) (4) (5) (6)

Sample: Banks Banks Banks Banks Banks Banks

USDshr
t USDshr

t USDshr
t USDshr

t USDshr
t USDshr

t

QRP 2Y
e /$,t –3.369*** –1.512* –3.039***

(0.403) (0.761) (0.467)

IRP 2Y
$,t –0.00366 0.000598 0.0487**

(0.0204) (0.0258) (0.0211)

IRP 2Y
e ,t –0.192*** –0.203*** –0.163***

(0.0319) (0.0513) (0.0302)

Trend X X

Control X X

Period 09q4–15q3 09q4–15q3 09q4–15q3 99q1–19q4 99q1–19q4 99q1–19q4

Observations 24 24 24 84 84 84

R–squared 0.644 0.708 0.710 0.284 0.285 0.478

Notes: Robust standard errors are shown in parentheses. *, **, *** denote significance at the 10, 5, and

1% levels respectively. Debt issuance data includes only banks. Latest observed values of QRP 2Y
e /$,t,

IRP 2Y
$,t and IRP 2Y

e ,t in a given quarter are used. QRP 2Y
e /$,t data come from Kremens and Martin (2019),

and IRP 2Y
$,t and IRP 2Y

e ,t come from Hördahl and Tristani (2014). Trend refers to a linear time trend

and control refers to the inclusion of total issuance as a control variable.
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Table B.2. QRP, IRP, debt currency choice: Sample restricted to non–banks

(1) (2) (3) (4) (5) (6)

Sample: Non–Banks Non–Banks Non–Banks Non–Banks Non–Banks Non–Banks

USDshr
t USDshr

t USDshr
t USDshr

t USDshr
t USDshr

t

QRP 2Y
e /$,t –2.750*** –1.759 –2.859***

(0.470) (1.174) (0.640)

IRP 2Y
$,t –0.000896 –0.0124 0.0232

(0.0207) (0.0278) (0.0252)

IRP 2Y
e ,t –0.196*** –0.166*** –0.203***

(0.0253) (0.0373) (0.0226)

Trend X X

Control X X

Period 09q4–15q3 09q4–15q3 09q4–15q3 99q1–19q4 99q1–19q4 99q1–19q4

Observations 24 24 24 84 84 84

R–squared 0.509 0.531 0.512 0.319 0.325 0.379

Notes: Robust standard errors are shown in parentheses. *, **, *** denote significance at the 10, 5, and 1%

levels respectively. Debt issuance data includes only non–banks. Latest observed values of QRP 2Y
e /$,t, IRP

2Y
$,t

and IRP 2Y
e ,t in a given quarter are used. QRP 2Y

e /$,t data come from Kremens and Martin (2019), and IRP 2Y
$,t

and IRP 2Y
e ,t come from Hördahl and Tristani (2014). Trend refers to a linear time trend and control refers to

the inclusion of total issuance as a control variable.



C. Appendix to Section 4: Evidence from Backward–Looking Mea-

sures

In order to complement the results from Section 4, in this appendix, we first redo the regressions

in Section 4.1, using bilateral exchange rates as opposed to the dollar index. We show that the

results are qualitatively similar, especially in terms of the patterns of short–term and longer–term

covariances. Next, guided by these results, we compare the international debt share of the yen and

the pound, currencies of countries that command a roughly similar share of the world economy. We

show that the share of the pound and the yen in international debt markets behave in line with the

risk properties of these currencies, in line with the mechanisms in our theory. We repeat the VAR

analysis with the MSCI World Index instead of S&P 500 and show that our results are similar and

even stronger. Finally, we report the results of the simple regressions between the dollar index and

stock market indices with non–overlapping observations.

C.1 Backward–looking results with bilateral exchange rates

In this section, we provide the results for the same regressions as in Section 4.1, but using

bilateral exchange rates for the dollar against four other major currencies. As Figure C.1 shows,

the dominant currency condition (2) holds empirically with currency j being the euro (EUR), the

yen (JPY), or the Swiss franc (CHF). The only exception is British pound (GBP), for which our

empirical proxy estimates in Figure C.1 for the covariance in (2) have a negative sign. However,

these covariance estimates are statistically insignificantly different from zero at the horizons of

average debt maturity of firms. Thus, even absent differences in issuance costs, firms would strictly

prefer issuing debt denominated in dollars, even if they could issue in EUR, JPY, or CHF. And even

a slight difference in issuance costs favouring dollar to GBP would also make dollar immediately

dominate over GBP.
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Fig. C.1. The betas of the bilateral exchange rate of the dollar against major currencies
with respect to stock market indices
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Notes: The graph on the left–hand side herein reports the regression coefficients βh from the regressions (4) using
the S&P 500 index. The graph on the right–hand side reports the regression coefficients from the regressions (4)
using the MSCI AC World Index. The dots show the corresponding values of the βh coefficients, while the lines show
the 95% confidence intervals for these coefficients. Standard errors are corrected using the Newey–West procedure
with the number of lags being equal to the horizon h of returns for each respective regression. The sample period for
the S&P 500 goes from January 1973–December 2019. The sample period for the MSCI AC World Index goes from
January 1988–December 2019 since data are only available starting from 1988.

C.2 Yen vs. Pound

As we show in Section C.1, the risk properties of the dollar alone can explain why the dollar

dominates the euro, the yen and the Swiss franc in the sense of Theorem 2.1. One notable case

is the pound: By Figure C.1, the pound has favorable risk properties for debt issuers compared

to most of the other major currencies. In reality, there are many reasons why the pound may

not be the most obvious competitor to the dollar, such as differences in the size of the economies,

lower issuance costs for the dollar etc. However, it is reasonable to compare the dynamics of debt

issuance in GBP to that in JPY, since Japan and the Great Britain have similar size in the world

economy. In this case, Figure C.1 shows that (2) holds empirically if we replace $ with GBP and

choose j=JPY. Hence, firms should strictly prefer issuing in GBP to issuing in JPY. Figure C.2 is

in line with this prediction of our model. Indeed, surprisingly, despite the slightly larger share of
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Japan in the world economy and lower nominal interest rates and inflation in Japan, the share of

pound–denominated debt is higher than the share of yen–denominated debt.

Fig. C.2. The yen versus the pound
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Source: BIS, IMF WEO, authors’ calculations

C.3 VAR Results using the MSCI World Index

In this subsection, we redo the VAR analysis conducted in Section 4 with the MSCI All Country

World Index instead of the S&P 500. Note that due to data availability, our sample period runs

only from 1988 to 2019. We present the results of the estimation of the VAR(2) model as well the

cumulative impulse response functions to a negative shock to the MSCI All Country World Index

below.

C.4 Simple Regressions Using Non–Overlapping Observations

In this appendix, we repeat the exercise in Section 4.1, but with non–overlapping observations,

for example we using data from January 1973, January 1978... etc to calculate five–year returns,
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Table C.1. A VAR(2) model of the MSCI World
Index and the FRED dollar index

(1) (2)

Ret MSCIt−1,t Ret USDt−1,t

Ret MSCIt−2,t−1 –0.287 0.171**

(0.208) (0.0716)

Ret MSCIt−3,t−2 –0.236 0.118

(0.220) (0.0756)

Ret USDt−2,t−1 0.0140 0.219

(0.536) (0.184)

Ret USDt−3,t−2 –0.0452 –0.286

(0.519) (0.179)

Observations 30 30

R–squared 0.1065 0.3433

Notes: Standard errors that are adjusted for small–sample

degrees of freedom in parantheses. *, **, *** denote sig-

nificance at the 10, 5, and 1% levels, respectively. The

coefficients are from a VAR(2) model of the yearly returns on

the MSCI World Index and the FRED dollar index against

major currencies (DTWEXM) between 1988 and 2019. The

variance–covariance matrix for the error terms is estimated

as: Σ̂ =

 0.0270

−− 0.0027 0.0032



and proceed similarly for other horizons, without any overlap between observations. Since our

sample period is not sufficiently large, this approach necessarily leads to very small sample sizes.

For example, since we have 46 years of data, five–year horizon only allows for 9 observations. We

nevertheless report the results, for S&P 500 using a sample between 1973 and 2019, and for the

MSCI World index, using a sample between 1988 and 2019, below. While in most cases, the results

are not statistically significant, they follow a similar pattern that we have shown in Section 4.1.
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Fig. C.3. Cumulative Impulse Response Functions of a Shock to MSCI World Index
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Source: Datastream, FRED, authors’ calculations.
Notes: Figures show the cumulative impulse response functions of a negative 1 ppt shock to the MSCI World Index
based on the estimates of a VAR(2) model of the yearly returns on the MSCI World Index and the FRED dollar
index against major currencies (DTWEXM) between 1988 and 2019, reported in Table C.1. The lines in each graph
represent the cumulative impulse response functions. The darker shaded areas represent the 90% confidence intervals,
while the lighter shaded areas represent the 95% confidence intervals.



Fig. C.4. The betas of the USD index returns with respect to stock market indices
using non–overlapping observations
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Notes: The graphs report the regression coefficients βh from the regressions (4) using non–overlapping samples across
different horizons, h. The round dots and the corresponding solid lines in both panels represent the point estimates,
βh, and 95% confidence intervals obtained using robust standard errors. The left–hand panel uses a sample period
between January 1973 and December 2019. The right–hand panel uses a sample period between January 1988 and
December 2019.



D. Appendix to Section 6: Dynamic Capital Structure

Firm’s problem is to maximize

W1(B0) =
∑
j

E1

[
M1,2

[(
1− (1− ρ)

(
B2(B1 +B0)

Ω2

)`)
(1 + c)Ej,2

]]
Bj,1(1− qc(j))

+ E1

[
M1,2

[
−B2(B1 +B0)

(
1−

(
B2(B1 +B0)

Ω2

)`)
+ Ω2`(`+ 1)−1

(
1−

(
B2(B1 +B0)

Ω2

)`+1
)]]

Differentiating, we get from the standard Kuhn–Tucker conditions that borrowing only in dollars

is optimal if and only if

E1

[
M1,2

[(
1− (1− ρ)

(
B2(B1 +B0)

Ω2

)`)
(1 + c)Ej,2

]]
(1− qc)

+ E1

[
M1,2

[(
−`(1− ρ)

(
B2(B1 +B0)

Ω2

)`−1

Ω−1
2

)
(1 + c)(1 + c(1− τ))Ej,2

]]
B$,1(1− qc($))

− (1 + c(1− τ))E1 [M1,2Ej,2]

+ E1

[
M1,2(`+ 1)

(
B2(B1 +B0)

Ω2

)`
(1 + c(1− τ))Ej,2

− `
(
B2(B1 +B0)

Ω2

)`
(1 + c(1− τ))Ej,2

]
≤ 0

for all j with the identity for j = $. This inequality can be rewritten as

E1[M1,2Ej,2]((1− qc)(1 + c)− (1 + c(1− τ)))

≤ E1

[
M1,2

(
B2(B1 +B0)

Ω2

)`
Ej,2

]
((1− ρ)(1 + c)[(1− qc)]− (1 + c(1− τ)))

+ (1− qc)`(1− ρ)(1 + c)(1 + c(1− τ))E1

[
M1,2

[((
B2(B1 +B0)

Ω2

)`−1

Ω−1
2

)
Ej,2

]]
B$,1
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At the same time, for dollar debt we get

E1[M1,2]((1− qc($))(1 + c)− (1 + c(1− τ)))

= E1

[
M1,2

(B2(B0) + (1 + c(1− τ))B1,$

Ω2

)`]
((1− ρ)(1 + c)[(1− q)]− (1 + c(1− τ)))

+ (1− q)`(1− ρ)(1 + c)E1

[
M1,2

(B2(B0) + (1 + c(1− τ))B1,$

Ω2

)` (1 + c(1− τ))B$,1

B2(B0) + (1 + c(1− τ))B1,$

]

and

E1[M1,2Ej,2]((1− q)(1 + c)− (1 + c(1− τ)))

≤ E1

[
M1,2

(B2(B0) + (1 + c(1− τ))B1,$

Ω2

)`
Ej,2

]
((1− ρ)(1 + c)[(1− q)]− (1 + c(1− τ)))

+ (1− q)`(1− ρ)(1 + c)E1

[
M1,2

(B2(B0) + (1 + c(1− τ))B1,$

Ω2

)` (1 + c(1− τ))B$,1

B2(B0) + (1 + c(1− τ))B1,$
Ej,2

]

Now, we will just be verifying the Kuhn–Tucker conditions at time zero when B0 is purely in US

dollars. In this case,

E1[M1,2Ej,2]((1− q)(1 + c)− (1 + c(1− τ)))

≤ E1

[
M1,2

(
(1 + c(1− τ))(B0,$ +B1,$)

Ω2

)`
Ej,2

]
((1− ρ)(1 + c)[(1− q)]− (1 + c(1− τ)))

+ (1− q)`(1− ρ)(1 + c)E1

[
M1,2

(
(1 + c(1− τ))(B0,$ +B1,$)

Ω2

)` B$,1

B0,$ +B1,$
Ej,2

]

while the dollar debt satisfies

E1[M1,2]((1− q)(1 + c)− (1 + c(1− τ)))

= E1

[
M1,2

(
(1 + c(1− τ))(B0,$ +B1,$)

Ω2

)`]
((1− ρ)(1 + c)[(1− q)]− (1 + c(1− τ)))

+ (1− q)`(1− ρ)(1 + c)E1

[
M1,2

(
(1 + c(1− τ))(B0,$ +B1,$)

Ω2

)` B$,1

B0,$ +B1,$

] (D.1)
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Dividing, we get

E1[M1,2]

E1[M1,2Ω−`2 ]
= x(B0,$ +B1,$)` + y(B0,$ +B1,$)`−1B1,$

whereas

E1[M1,2Ej,2]

E1[M1,2Ω−`2 Ej,2]
≤ E1[M1,2]

E1[M1,2Ω−`2 ]

so the condition is still the same. Here, x, y > 0 (we assume that x > 0) are constants. This

defines B1,$ = F (X1, B0). However, to derive the first order conditions, we will need to compute

derivatives of F with respect to other debt components. To this end, we need to differentiate the

implicit equation

ε1E1[M1,2]

= xE1

M1,2

∑
j

Ej,2Bj,0 +B1,$

`

Ω−`2


+ E1

M1,2Ω−`2

∑
j

Ej,2Bj,0 +B1,$

`−1

B∗$,1


Differentiating this identify with respect to B∗j,0, we get

0 = x`E1[M1,2Ω−`2 (B0,$ +B1,$)`−1(Ej,2 +B′1,$)] + E1

[
M1,2Ω−`2

(
B0,$ +B1,$

)`−1
]
B′$,1

+ (`− 1)E1[M1,2Ω−`2 (B0,$ +B1,$)`−2(Ej,2 +B′1,$)]B$,1

implying that

∂B$,1

∂Bj,0
= −

E1[M1,2Ω−`2 Ej,2](x`(B0,$ +B1,$)` + (`− 1)(B0,$ +B1,$)`−1B$,1)

E1[M1,2Ω−`2 ](x`(B0,$ +B1,$)` + [(`− 1)B$,1(B0,$ +B1,$)`−1) +
(
B0,$ +B1,$

)`
]

= −E1[M1,2Ω−`2 Ej,2]

E1[M1,2Ω−`2 ]

`ε1E1[M1,2]− E1[M1,2Ω−`2 ](B0,$ +B1,$)`−1B$,1

`ε1E1[M1,2] + E1[M1,2Ω−`2 ](B0,$ +B1,$)`−1B$,0

Now we can solve the time zero problem. The objective with respect to B0 is

max
B0

{∑
j

δj(B0)Bj,0 + E[M0,1 max{W1(B0, X1Z1)−
∑
j

c1Bj,0(1− τ)Ej,1, 0}]

}
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where

δj,0(B0) = E[M0,1(c1Ej,1 + δj,1(B0 + F (X1, B0)))1W1(B0,X1Z1)−
∑
j c1Bj,0(1−τ)Ej,1>0]

and where

W1(B0, X1) = δ$,1(B0 + F (X1, B0)))F (X1, B0)(1− qc)

+ E1[1Ω2>B2M1,2(`(`+ 1)−1Ω2 − B2(B1 +B0))]

+ (`+ 1)−1E1

[
1Ω2>B2M1,2Ω−`2 (B2(B1 +B0))`+1

]
where we have defined

δj,1(B0 + F (X1, B0))) = E1

[
M1,21Ω2>B2

[(
1− (1− ρ)

(
B2(F (X1, B0) +B0)

Ω2

)`)
(1 + c)Ej,2

]]

Now, by assumption, Z1 ∼ `y`−1 on [0, 1]. First, we need to figure out the threshold Θ1(X1, B0)

for default at time t = 1. It is determine via

W1(B0, X1Θ1)−
∑
j

c1Bj,0(1− τ)Ej,1 = 0 .

Substituting, we get the following equation for Θ1 evaluated as B = B$,0 :

δ$,1(B0 +B$,1(Θ1),Θ1)B$,1(Θ1)(1− qc)

+ E1[1Ω2>B2/Θ1
M1,2(`(`+ 1)−1Ω2Θ1 − (1 + c(1− τ))(B$,1(Θ1) +B0))]

+ (`+ 1)−1(1 + c(1− τ))`+1E1

[
M1,21Ω2>B2/Θ1

Θ−`1 Ω−`2 (B$,1(Θ1) +B0)`+1
]

= c1B$,0(1− τ) .

We will impose a technical condition that at that threshold it is optimal not to issue any more debt

(indeed, this is the default threshold, so it makes perfect sense). Hence, B1 is not there at Θ1 and

now the equation for Θ1 becomes much simpler. By assumption, there are always some states in

which the firm survives at time t = 2. This is equivalent to min(Ω2)Θ1 > B$,0(1 + c(1− τ)). In this

case,

Θ1E1[M1,2`(`+ 1)−1Ω2] + B`+1
$,0 Θ−`1 (`+ 1)−1E1[M1,2Ω−`2 ] = (1 + c(1− τ) + c1(1− τ))B$,0
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and hence

Θ1 = Θ∗1B$,0

where

Θ∗1E1[M1,2`(`+ 1)−1Ω2] + (Θ∗1)−`(`+ 1)−1E1[M1,2Ω−`2 ] = (1 + c(1− τ) + c1(1− τ))

and this equation has a solution if and only if

(
E1[M1,2Ω2]

E1[M1,2Ω−`2 ]

)−1/(`+1)

E1[M1,2`(`+ 1)−1Ω2] +

(
E1[M1,2Ω2]

E1[M1,2Ω−`2 ]

)`/(`+1)

(`+ 1)−1E1[M1,2Ω−`2 ]

< (1 + c(1− τ) + c1(1− τ))

That is, default threshold is homogeneous in B$,0 when no new debt is issued at the default

threshold. Let us now verify the technical condition: It is equivalent to

1 + c(1− τ)

min Ω2
E1[M1,2`(`+1)−1Ω2] +

(
1 + c(1− τ)

min Ω2

)−`
(`+1)−1E1[M1,2Ω−`2 ] > 1+c(1−τ)+c1(1−τ)

Now, we can integrate the idiosyncratic shock away:

δj,0(B0) = E[M0,1c1Ej,1(1−Θ1(X1, B0)`)] + E[M0,1

∫ 1

Θ1(X1,B0)
δj,1(B0 + F (X1q,B0))`q`−1dq]

= E[M0,1c1Ej,1(1−Θ1(X1, B0)`)]

+ E[M0,1

∫ 1

Θ1(X1,B0)
E1

[
M1,2

[(
1− (1− ρ)

(
(1 + c(1− τ))((F (X1q,B0) +B0)

Ω2q

)`)
(1 + c)Ej,2

]]
`q`−1dq]

= E[(M0,1c1Ej,1 +M0,2(1 + c)Ej,2)]−B`
0E[(M0,1c1Ej,1 +M0,2(1 + c)Ej,2)(Θ∗1)`]

− (1− ρ)E[M0,2(1 + c)Ej,2Ω−`2 `

∫ 1

B0Θ∗
1

B2(q)`q−1dq]

We will also need

W̄1(B0, X1, Q) =

∫ 1

Q
W1(B0, X1q)`q

`−1dq
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and now we can finally write down the full value function:

∑
j

δj(B0)Bj,0 − E[M0,1

∑
j

c1Bj,0(1− τ)Ej,1(1−Θ1(X1, B0)`)]

+ E[M0,1W̄1(B0, X1,Θ1(X1, B0))]

Our objective is to verify the Kuhn–Tucker conditions at the pure dollar debt equilibrium. We thus

need to verify (note that the terms with Θ′1 cancels out):

δj(B0)(1− qc) +
∂

∂Bj,0
δ$(B0)B$,0(1− qc) − E[M0,1c1(1− τ)Ej,1(1−Θ1(X1, B0)`)]

+ E[M0,1
∂

∂Bj,0
W̄1(B0, X1,Θ1(X1, B0))] < 0

for all j 6= $. Now, we have

∂

∂Bj,0
δ$(B0) =

∂

∂Bj,0

(
E[M0,1c1(1−Θ1(X1, B0))`]

+ E[M0,1

∫ 1

Θ1(X1,B0)
δ$,1(B0 + F (X1q,B0))`q`−1dq]

)

= − `E[M0,1c1Θ1(X1, B0)`−1 ∂

∂Bj,0
Θ1(X1, B0)]

− `E[M0,1Θ1(X1, B0)`−1δ$,1(B0 + F (X1Θ1(X1, B0), B0))
∂

∂Bj,0
Θ1(X1, B0)]

+ E[M0,1

∫ 1

Θ1(X1,B0)

∂

∂Bj,0
δ$,1(B0 + F (qX1, B0)))`q`−1dq]

= −`E
[
M0,1Θ`−1

1

(
c1 + δ$,1(B0 + F (X1Θ1(X1, B0), B0))

) ∂

∂Bj,0
Θ1(X1, B0)

]
− E

[
M0,1

∫ 1

Θ1(X1,B0)
`(1− ρ)(1 + c(1− τ))`

E1

[
M1,2q

−`Ω−`2

(F (qX1, B0)

∂Bj,0
+ Ej,2

)
(F (qX1, B0) +B0))`−1 (1 + c)

]
`q`−1dq

]
= −`E

[
M0,1Θ`−1

1

(
c1 + δ$,1(B0 + F (X1Θ1(X1, B0), B0))

) ∂

∂Bj,0
Θ1(X1, B0)

]
− E

[
M0,1

∫ 1

Θ1(X1,B0)
`(1− ρ)(1 + c(1− τ))`

E1

[
M1,2q

−`Ω−`2

(F (qX1, B0)

∂Bj,0
+ Ej,2

)
(F (qX1, B0) +B0))`−1 (1 + c)

]
`q`−1dq

]

19



Furthermore, (recall that we are always evaluating the derivatives at Bk,0 = 0 for all k 6= $)

∂

∂Bj,0
δ$,1(B0 + F (X1, B0))) =

∂

∂Bj,0
E1

[
M1,2

[(
1− (1− ρ)

(
B2(F (X1, B0) +B0)

Ω2

)`)
(1 + c)

]]

= −`(1− ρ)(1 + c(1− τ))`E1

[
M1,2Ω−`2

(∂B$,1

∂Bj,0
+ Ek,2

)
(F (X1, B0) +B0))`−1 (1 + c)

]
and

∂

∂Bj,0
Θ1(X1, B0) =

c1(1− τ)Ej,1
W1,X(B0, X1Θ1)X1

whereas

∂

∂Bj,0
W1(B0, X1) =

∂

∂Bj,0

(
δ$,1(B0 +B$,1)B$,1(1− qc)

+ E1[M1,2(`(`+ 1)−1Ω2 − B2(B1 +B0))]

+ (`+ 1)−1E1

[
M1,2Ω−`2 (B2(B1 +B0))`+1

])

= −`(1− ρ)(1 + c(1− τ))`E1

[
M1,2Ω−`2 Ej,2(B$,1 +B0)`−1(1 + c)

]
B$,1(1− qc)

− (1 + c(1− τ))E1[M1,2Ej,2] + (1 + c(1− τ))`+1E1

[
M1,2Ω−`2 (B$,1 +B0)`Ej,2

]
and

∂

∂q
W1(B0, X1q) =

∂

∂q

(
δ$,1(B0 +B$,1(q), q)B$,1(q)(1− qc)

+ E1[M1,2(`(`+ 1)−1Ω2q − (1 + c(1− τ))(B$,1(q) +B0))]

+ (`+ 1)−1E1

[
M1,2q

−`Ω−`2 (B$,1(q) +B0)`+1
])

= `(1− ρ)(1 + c(1− τ))`q−`−1E1

[
M1,2Ω−`2 (B$,1(q) +B0)`(1 + c)

]
B$,1(q)(1− qc)

+ E1[M1,2`(`+ 1)−1Ω2] − `(`+ 1)−1(1 + c(1− τ))`+1E1

[
M1,2q

−`−1Ω−`2 (B$,1(q) +B0)`+1
]
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but at Θ1 (since we assume that no new debt is issued at the default threshold)

∂

∂q
W1(B0, X1q)|q=Θ1 = E1[M1,2`(`+ 1)−1Ω2]

− `(`+ 1)−1(1 + c(1− τ))`+1E1

[
M1,2Θ−`−1

1 Ω−`2 (B$,1(q) +B0)`+1
]

Furthermore, we know

E1[M1,2`(`+ 1)−1Ω2] + B`+1
$,0 Θ−`−1

1 (`+ 1)−1E1[M1,2Ω−`2 ] = (1 + c(1− τ) + c1(1− τ))B$,0Θ−1
1

and therefore we can rewrite

E1[M1,2`(`+ 1)−1Ω2] − `(`+ 1)−1(1 + c(1− τ))`+1E1

[
M1,2Θ−`−1

1 Ω−`2 (B$,1(q) +B0)`+1
]

= E1[M1,2`(`+ 1)−1Ω2] − `
(

(1 + c(1− τ) + c1(1− τ))B$,0Θ−1
1 − E1[M1,2`(`+ 1)−1Ω2]

)
= `(E1[M1,2Ω2]− (1 + c(1− τ) + c1(1− τ))(Θ∗1)−1)

and hence

∂

∂Bj,0
Θ1(X1, B0) =

c1(1− τ)Ej,1
`(E1[M1,2Ω2]− (1 + c(1− τ) + c1(1− τ))(Θ∗1)−1)

Note that, by the envelope condition, we just need to differentiate with respect to B0, keeping

B1,$ fixed.
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Finally,

∂

∂Bj,0
W̄1(B0, X1, Q) =

∫ 1

Q

∂

∂Bj,0
W1(B0, X1q)`q

`−1dq

=

∫ 1

Q
`

(
− `(1− ρ)(1 + c(1− τ))`q−`E1

[
M1,2Ω−`2 Ej,2(B$,1(q) +B0)`−1(1 + c)

]
B$,1(q)(1− qc)

− (1 + c(1− τ))E1[M1,2Ej,2] + (1 + c(1− τ))`+1q−`E1

[
M1,2Ω−`2 (B$,1(q) +B0)`Ej,2

])
q`−1dq

= −(1−Q`)(1 + c(1− τ))E1[M1,2Ej,2]

+ `

∫ 1

Q
q−1(1 + c(1− τ))`

(
− `(1− ρ)E1

[
M1,2Ω−`2 Ej,2(B$,1(q) +B0)`−1(1 + c)

]
B$,1(q)(1− qc)

+ (1 + c(1− τ))`+1E1

[
M1,2Ω−`2 (B$,1(q) +B0)`Ej,2

])
dq .

Thus,
∂

∂Bj,0
δ$(B0)

= −`E
[
M0,1Θ`−1

1

(
c1 + δ$,1(B0 + F (X1Θ1(X1, B0), B0))

) ∂

∂Bj,0
Θ1(X1, B0)

]
− E

[
M0,1

∫ 1

Θ1(X1,B0)
`(1− ρ)(1 + c(1− τ))`

E1

[
M1,2q

−`Ω−`2

(F (qX1, B0)

∂Bj,0
+ Ej,2

)
(F (qX1, B0) +B0))`−1 (1 + c)

]
`q`−1dq

]
= −`E

[
M0,1Θ`−1

1

(
c1 + δ$,1(B0 + F (X1Θ1(X1, B0), B0))

)
× c1(1− τ)Ej,1
`(E1[M1,2Ω2]− (1 + c(1− τ) + c1(1− τ))(Θ∗1)−1)

]
− E

[
M0,1

∫ 1

Θ1(X1,B0)
`(1− ρ)(1 + c(1− τ))`

E1

[
M1,2Ω−`2

(F (qX1, B0)

∂Bj,0
+ Ej,2

)
(F (qX1, B0) +B0))`−1 (1 + c)

]
`q−1dq

]
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whereas

E[M0,1
∂

∂Bj,0
W̄1(B0, X1,Θ1(X1, B0))]

= E

[
M0,1

(
− (1−Θ`

1)(1 + c(1− τ))E1[M1,2Ej,2]

+ `

∫ 1

Θ1

q−1(1 + c(1− τ))`

(
− `(1− ρ)E1

[
M1,2Ω−`2 Ej,2(B$,1(q) +B0)`−1(1 + c)

]
B$,1(q)(1− qc)

+ (1 + c(1− τ))`+1E1

[
M1,2Ω−`2 (B$,1(q) +B0)`Ej,2

])
dq

)]

To proceed further, we need to derive the first order approximation to the policy function B$,1

using (D.1) under the assumption that ((1− q)(1 + c)− (1 + c(1− τ))) is small. In this case,

E1[M1,2]((1− q)(1 + c)− (1 + c(1− τ)))

= E1

[
M1,2

(
(1 + c(1− τ))(B0,$ +B1,$)

Ω2

)`]
((1− ρ)(1 + c)[(1− q)]− (1 + c(1− τ)))

+ (1− q)`(1− ρ)(1 + c)E1

[
M1,2

(
(1 + c(1− τ))(B0,$ +B1,$)

Ω2

)` B$,1

B0,$ +B1,$

]

Let

ε1 =
(1− q)(1 + c)− (1 + c(1− τ))

(1− q)`(1− ρ)(1 + c)(1 + c(1− τ))`
, ε2 =

(1− q)(1− ρ)(1 + c)− (1 + c(1− τ))

(1− q)`(1− ρ)(1 + c)(1 + c(1− τ))`

and assume they are small (this is indeed the case when τ is small). Then, the gains from debt

issuance are small and hence debt is small. Thus, B0 and B1 are proportional to ε
1/`
1 and B1,$(q)

(when Ω2 is multiplied by q) solves

q`
E1[M1,2]

E1[M1,2Ω−`2 ]
ε1 = (B0 +B1)`−1B1 + x(B0 +B1)`

We will rescale them and denote B∗t = Bt/ε
1/`
1 . Then,

q`
E1[M1,2]

E1[M1,2Ω−`2 ]
= (B∗0 +B∗1)`−1B∗1 + x(B∗0 +B∗1)`
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where we assume that x is constant.

Now we can gather all the terms and rewrite the Kuhn–Tucker condition as

δj(B0)(1− qc) +
∂

∂Bj,0
δ$(B0)B$,0(1− qc) − E[M0,1c1(1− τ)Ej,1(1−Θ1(X1, B0)`)]

+ E[M0,1
∂

∂Bj,0
W̄1(B0, X1,Θ1(X1, B0))]

=

(
E[(M0,1c1Ej,1 +M0,2(1 + c)Ej,2)]−B`

0E[(M0,1c1Ej,1 +M0,2(1 + c)Ej,2)(Θ∗1)`]

− (1− ρ)E[M0,2(1 + c)Ej,2Ω−`2 `

∫ 1

B0Θ∗
1

B2(q)`q−1dq]

)
(1− qc)

+B$,0

(
− `E

[
M0,1Θ`−1

1

(
c1 + δ$,1(B0 + F (X1Θ1(X1, B0), B0))

)
× c1(1− τ)Ej,1
`(E1[M1,2Ω2]− (1 + c(1− τ) + c1(1− τ))(Θ∗1)−1)

]
− E

[
M0,1

∫ 1

Θ1(X1,B0)
`(1− ρ)(1 + c(1− τ))`

E1

[
M1,2Ω−`2

(F (qX1, B0)

∂Bj,0
+ Ej,2

)
(F (qX1, B0) +B0))`−1 (1 + c)

]
`q−1dq

])
(1− qc)

− E[M0,1c1(1− τ)Ej,1(1−Θ1(X1, B0)`)]

+ E

[
M0,1

(
− (1−Θ`

1)(1 + c(1− τ))E1[M1,2Ej,2]

+ `

∫ 1

Θ1

q−1(1 + c(1− τ))`

(
− `(1− ρ)E1

[
M1,2Ω−`2 Ej,2(B$,1(q) +B0)`−1(1 + c)

]
B$,1(q)(1− qc)

+ (1 + c(1− τ))`+1E1

[
M1,2Ω−`2 (B$,1(q) +B0)`Ej,2

])
dq

)]

Now, since B0 is small, we will only keep the highest order terms (those of order B`
$,0) and ignore
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the terms of the order o(B`
$,0). This gives

δj(B0)(1− qc) +
∂

∂Bj,0
δ$(B0)B$,0(1− qc) − E[M0,1c1(1− τ)Ej,1(1−Θ1(X1, B0)`)]

+ E[M0,1
∂

∂Bj,0
W̄1(B0, X1,Θ1(X1, B0))]

=

(
E[(M0,1c1Ej,1 +M0,2(1 + c)Ej,2)]−B`

0E[(M0,1c1Ej,1 +M0,2(1 + c)Ej,2)(Θ∗1)`]

− (1− ρ)E[M0,2(1 + c)Ej,2Ω−`2 `

∫ 1

Θ1

B2(q)`q−1dq]

)
(1− qc)

+B$,0

(
− `B`−1

$,0 E
[
M0,1(Θ∗1)`−1

(
c1 + E1[M1,2(1 + c)]

)
× c1(1− τ)Ej,1
`(E1[M1,2Ω2]− (1 + c(1− τ) + c1(1− τ))(Θ∗1)−1)

]
− E

[
M0,1

∫ 1

Θ1

`(1− ρ)(1 + c(1− τ))`

E1

[
M1,2Ω−`2

(F (qX1, B0)

∂Bj,0
+ Ej,2

)
(F (qX1, B0) +B0))`−1 (1 + c)

]
`q−1dq

])
(1− qc)

− E[M0,1c1(1− τ)Ej,1(1−B`
$,0(Θ∗1)`)]

+

(
E

[
M0,1

(
− (1−B`

$,0(Θ∗1)`)(1 + c(1− τ))E1[M1,2Ej,2]

+ `

∫ 1

Θ1

q−1(1 + c(1− τ))`

(
− `(1− ρ)E1

[
M1,2Ω−`2 Ej,2(B$,1(q) +B0)`−1(1 + c)

]
B$,1(q)(1− qc)

+ (1 + c(1− τ))`+1E1

[
M1,2Ω−`2 (B$,1(q) +B0)`Ej,2

])
dq

)])
+ o(ε

1/`
1 )
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We can now regroup this as

E[(M0,1c1Ej,1 +M0,2cEj,2)](τ − qc)

+B`
$,0

(
− E[(M0,1c1Ej,1 +M0,2(1 + c)Ej,2)(Θ∗1)`](1− qc)

− `E

[
M0,1(Θ∗1)`−1

(
c1 + E1[M1,2(1 + c)]

)
× c1(1− τ)Ej,1
`(E1[M1,2Ω2]− (1 + c(1− τ) + c1(1− τ))(Θ∗1)−1)

]
(1− qc)

+ E[(M0,1c1(1− τ)Ej,1 + (1 + c(1− τ))M0,2Ej,2)(Θ∗1)`]

)

+

∫ 1

Θ1

q−1(
− (1− ρ)E[M0,2(1 + c)Ej,2Ω−`2 `B2(q)`(1− qc)

− `2E[M0,2(1− ρ)Ω−`2 (1 + c(1− τ))
(F (qX1, B0)

∂Bj,0
+ Ej,2

)
B2(q)`−1B$,0(1 + c)(1− qc)

+ `E

[
M0,2(1 + c(1− τ))`

(
− `(1− ρ)

[
Ω−`2 Ej,2(B$,1(q) +B0)`−1(1 + c)

]
B$,1(q)(1− qc)

+ (1 + c(1− τ))`+1
[
Ω−`2 (B$,1(q) +B0)`Ej,2

]))
dq + o(ε

1/`
1 )

Recalling that we assume that q, τ, ρ are all of the order as ε1. Thus,

−(1− ρ)E[M0,2(1 + c)Ej,2Ω−`2 `B2(q)`(1− qc) + (1 + c(1− τ))`+1
[
Ω−`2 (B$,1(q) +B0)`Ej,2

]
= O(ε2

1)

and

B`
$,0(−E[(M0,1c1Ej,1+M0,2(1+c)Ej,2)(Θ∗1)`](1−qc)+E[(M0,1c1(1−τ)Ej,1+(1+c(1−τ))M0,2Ej,2)(Θ∗1)`]) = O(ε2

1) .
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Thus, we are only left with

E[(M0,1c1Ej,1 +M0,2cEj,2)](τ − qc)

+B`
$,0

(
− `E

[
M0,1(Θ∗1)`−1

c1(1− τ)Ej,1
(
c1 + E1[M1,2(1 + c)]

)
`(E1[M1,2Ω2]− (1 + c(1− τ) + c1(1− τ))(Θ∗1)−1)

]
(1− qc)

)

+

∫ 1

Θ1

q−1(
− `2E[M0,2(1− ρ)Ω−`2 (1 + c(1− τ))

F (qX1, B0)

∂Bj,0
B2(q)`−1B$,0(1 + c)(1− qc)]

− `2E

[
M0,2(1 + c(1− τ))`

(
(1− ρ)

[
Ω−`2 Ej,2(B$,1(q) +B0)`(1 + c)

]
(1− qc)]

))
dq + o(ε

1/`
1 )

Now, the really surprising effect is that when B$,0 is close to zero, the integral produces a logarithm

term through the following lemma.

Lemma D.1 ∫ 1

Θ∗
1B
f(q)q−1dq ≈ − log(Θ∗1B)f(Θ∗1B)

as B → 0.

Thus, the key term is

E[(M0,1c1Ej,1 +M0,2cEj,2)](τ − qc(j)) + `2(B$,0)` log(B$,0Θ∗1)

E

[
M0,2(1 + c(1− τ))`(1− ρ)

[
Ω−`2 Ej,2(1 + c)

]
(1− qc($))

]

which should be non–positive for j 6= $ and zero for j = $. This leads to the inequality

qc($)− qc(j)
τ − qc($)

≤ E$[Ω−`2 Ej,2]

E$[Ω−`2 ]

c1e
−r1($) + c2e

−r2($)

c1e−r1(j) + c2e−r2(j)
− 1

=
E$[Ω−`2 Ej,2]

E$[Ω−`2 ]E$[Ej,2]

c1e
r2($)−r1($) + c2

c1er2(j)−r1(j) + c2
− 1

=
Cov$(Ω−`2 , Ej,2)

E$[Ω−`2 ]E$[Ej,2]
+

E$[Ω−`2 Ej,2]

E$[Ω−`2 ]E$[Ej,2]

c1(er2($)−r1($) − er2(j)−r1(j))

c1er2(j)−r1(j) + c2

where we have used that E$[Ej,2] = er2($)−r2(j).
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Proof of Proposition 6.1. We need to show that

−
∑
j

E1

[
M1,2

[(
1− (1− ρ)

(
B2(−B1 +B0)

Ω2

)`)
(1 + c)Ej,2

]]
Bj,1

+ E1

[
M1,2

[
−B2(−B1 +B0)

(
1−

(
B2(−B1 +B0)

Ω2

)`)
+ Ω2`(`+ 1)−1

(
1−

(
B2(−B1 +B0)

Ω2

)`+1
)]]

is monotone decreasing in Bj,1 for Bj,1 ≥ 0. Taking the derivative, we get

− E1

[
M1,2

[(
1− (1− ρ)

(
B2(−B1 +B0)

Ω2

)`)
(1 + c)Ej,2

]]

−
∑
k

E1

[
M1,2

[(
`(1− ρ)

(
B2(−B1 +B0)

Ω2

)`−1

Ω−1
2

)
(1 + c)(1 + c(1− τ))Ej,2Ek,2

]]
Bk,1

+ (1 + c(1− τ))E1 [M1,2Ej,2]

− E1

[
M1,2(`+ 1)

(
B2(−B1 +B0)

Ω2

)`
(1 + c(1− τ))Ej,2

+ `

(
B2(−B1 +B0)

Ω2

)`
(1 + c(1− τ))Ej,2

]

= −E1

[
M1,2

[(
1− (1− ρ)

(
B2(−B1 +B0)

Ω2

)`)
(1 + c)Ej,2

]]

−
∑
k

E1

[
M1,2

[(
`(1− ρ)

(
B2(−B1 +B0)

Ω2

)`−1

Ω−1
2

)
(1 + c)(1 + c(1− τ))Ej,2Ek,2

]]
Bk,1

+ (1 + c(1− τ))E1 [M1,2Ej,2]

− E1

[
M1,2

(
B2(−B1 +B0)

Ω2

)`
(1 + c(1− τ))Ej,2

]

= −cτE1[M1,2Ej,2]

+ ((1− ρ)(1 + c)− (1 + c(1− τ)))E1

[
M1,2

(
B2(−B1 +B0)

Ω2

)`
Ej,2

]

−
∑
k

E1

[
M1,2

[(
`(1− ρ)

(
B2(−B1 +B0)

Ω2

)`−1

Ω−1
2

)
(1 + c)(1 + c(1− τ))Ej,2Ek,2

]]
Bk,1
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≤ −cτE1[M1,2Ej,2]

+ ((1− ρ)(1 + c)− (1 + c(1− τ)))E1

[
M1,2

(
B2(−B1 +B0)

Ω2

)`
Ej,2

]

−
∑
k

E1

[
M1,2

[(
`(1− ρ)

(
B2(−B1 +B0)

Ω2

)`−1

Ω−1
2

)
(1 + c)(1 + c(1− τ))Ej,2Ek,2

]]
Bk,11Bk,1≤0

≤ −cτE1[M1,2Ej,2]

+ ((1− ρ)(1 + c)− (1 + c(1− τ)))E1

[
M1,2

(
B2(−B1 +B0)

Ω2

)`
Ej,2

]

+ `(1− ρ)(1 + c)E1

[
M1,2

(
B2(−B1 +B0)

Ω2

)`
Ej,2

]

= −cτE1[M1,2Ej,2] + ((1 + `)(1− ρ)(1 + c)− (1 + c(1− τ)))E1

[
M1,2

(
B2(−B1 +B0)

Ω2

)`
Ej,2

]

and hence the result holds if

sup

(
B2(−B1 +B0)

Ω2

)`
≤ cτ

(1 + `)(1− ρ)(1 + c)− (1 + c(1− τ))
.

Consider now the possibility that new debt is issued at time t = 1. The optimal amount of new

debt in currency p satisfies

0 = −cτE1[M1,2Ep,2]

+ ((1− ρ)(1 + c)− (1 + c(1− τ)))E1

[
M1,2

(
B2(−B1 +B0)

Ω2

)`
Ep,2

]

−
∑
k

E1

[
M1,2

[(
`(1− ρ)

(
B2(−B1 +B0)

Ω2

)`−1

Ω−1
2

)
(1 + c)(1 + c(1− τ))Ep,2Ek,2

]]
Bk,1

Define the matrix

Pj,k =

[(
`(1− ρ)

(
B2(−B1 +B0)

Ω2

)`−1

Ω−1
2

)
(1 + c)(1 + c(1− τ))Ej,2Ek,2

]
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and the vector

Qk = (((1− ρ)(1 + c)− (1 + c(1− τ)))

(
B2(−B1 +B0)

Ω2

)`
− cτ)Ek,2 > 0 .

Then, first order conditions can be rewritten as a system

E1[M1,2P]B = E1[M1,2Q]

In the extreme case when all exchange rates are identical, it follows immediately that the total net

acquired-back det
∑

k Bk has to be strictly negative (meaning that the firm is issuing debt and is

indifferent about re-shuffling because all currencies are identical). But one currencies are slightly

different, the optimal debt issuance will feature approximately equal issuance amounts, all positive.

Q.E.D.
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E. Additional results: Local currency and dollar debt

The main goal of our paper is to explain the dominance of the dollar compared to other major

international currencies primarily with global firms in mind. While it is not our primary focus

to explain why firms in emerging markets issue debt in dollars as opposed to local currency, the

mechanisms underlined in our paper do yield some predictions about that as well. In this appendix,

we take as given the dominance of dollar among the major global currencies, and we investigate

whether debt view can be used to explain the mixture of dollar– and local–currency denominated

debt for non–financial firms in a cross–section of emerging market economies.

E.1 Results

We develop and test the predictions of an extension of our model using a cross–section of the

emerging market economies for which data on corporate debt in different currencies are available.2

We prove the following extension of Theorem 2.1 for the case wherein firms issue a mixture of local

currency (LC) and dollar–denominated debt (see Theorem E.2 in the Appendix for the proof. Note

that, while Proposition E.1 is a partial equilibrium result, it still holds true in general equilibrium

when debt overhang costs are sufficiently small).

Proposition E.1 Suppose that (1) q = q($) (that is, issuing in LC costs the same as issuing in

dollars); (2) the variance of all shocks is sufficiently small; and (3) issuing debt in both LC and

dollars is optimal; (4) ` is close to 1. Then,

(a) the fraction Bt
Bt($)E$,i,t

is monotone increasing in the covariance Covt(εi,t+1, ε$,t+1) if and only

if Bt ≥ Bt($)E$,i,t;

(b) the fraction Bt
Bt($)E$,i,t

is always monotone decreasing in σi,ε.

The intuition for the first theoretical result is that local currency debt partly replicates insurance

properties of the dominant currency in downturns, while it is a better hedge against domestic

2Data were obtained from the Institute for International Finance (IIF) for the period from 2005 Q1 to 2018 Q2.
The countries in our sample are Argentina, Brazil, Chile, China, Colombia, Czechia, Hong Kong, Hungary, India,
Indonesia, Israel, Republic of Korea, Malaysia, Mexico, Poland, Russian Federation, Saudi Arabia, Singapore, South
Africa, Thailand and Turkey.

31



productivity shocks. The second result is that volatile inflation generates volatility of profits which

the firms avoid by issuing less local currency debt.

Items (a)–(b) of Proposition E.1 directly translate into the testable empirical hypotheses. We

test the two implications of our theory:

1. The local currency share of corporate debt is higher for countries in which domestic inflation

correlates more with US inflation when controlling for relevant factors.

2. Firms in countries with more volatile domestic inflation tend to have less debt denominated

in local currency.

Fig. E.1. Mean of the local currency to USD debt ratio by country
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Figure E.1 shows the mean of the debt ratio, ¯LCU
USD i

, for each country in our sample. The left–

hand panel shows several outliers: China and the EU countries in the sample (Czechia, Hungary,

and Poland), while the right–hand panel shows the rest of the countries. We exclude outliers from

our regressions and focus only on the sample of countries listed in the right–hand panel.
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We find statistically significant evidence for the first prediction. Our second test results in a

coefficient with the predicted sign, yet statistically insignificant.

In order to test the first hypothesis, we proceed as follows. For each in our sample, we estimated

the following time series regression:

πit = γ0 + γ1 ·Ret MSCIACWorldt + Γ ·Ret DomesticStockIndexit + πres,it , (E.1)

where πit is the domestic monthly inflation rate in and Ret MSCIACWorldt is the monthly return

on the MSCI AC World Index. Ret DomesticStockIndexit is the monthly return on the domestic

stock market index. πres,it are the residuals from this regression. We also run the following regression

for the US:

πUSt = µ0 + µ1Ret MSCIACWorldt + πres,USt , (E.2)

We then run the following regression to compute a proxy for the covariance Covt(εi,t+1, ε$,t+1)

between the residual domestic inflation and residual US inflation (see item (a) of Proposition E.1),

πres,it = α+ βπres,USt + εt ,

where πres,it is the residual domestic monthly inflation rate in from (E.1) and πres,USt is the

residual monthly inflation rate in the US from (E.2). We denote the estimated slope coefficient by

β̂
πres,it ,πres,USt
i .

We then run the following cross–sectional regression:

¯LCU

USD i
= α1 + β1β̂

πres,it ,πres,USt
i +Xi + ηi . (E.3)

Here, ¯LCU
USD i

is the average ratio of debt denominated in local currency to debt denominated in

dollars for corporates in the countries of the dataset; Xi denotes other control variables.

Item (a) of Proposition E.1 predicts that the coefficient β1 in the regression (E.3) should be

positive.

To test the second hypothesis, we calculate the standard deviation of πres,it as a proxy for σε,i
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in Proposition E.1, and then run the following cross–sectional regression:

¯LCU

USD i
= α2 + β2σ

πres,it
i +Xi + ηi . (E.4)

Proposition E.1, item (b) predicts that β2 < 0.

In column (1), we run univariate regressions In column (2), we add an additional control variable

¯kaopeni : a financial openness index obtained from Chinn and Ito (2006). In column (3), we take

the predictions of the model literally as they appear in item (a) of the Proposition E.1: β1 > 0

for countries where ¯LCU
USD i

> 1 and we exclude Hong Kong where ¯LCU
USD i

< 1. In all three columns,

regressions corroborate our hypothesis.3 The first three columns are in line with the predictions of

our theory. Column (4) of Table E.1 shows the results of regression (E.4). Although the result is

lacking statistical significance, the sign of the coefficient is indeed consistent with our theoretical

prediction.

3All our results are qualitatively and quantitatively similar when we use raw domestic and US inflation rates,
instead of residuals. Moreover, all results remain valid if we use the share of local currency debt in total debt instead
of the ratio of local currency debt to dollar debt.
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Table E.1. The cross–section of the local currency to dollar
debt ratio

(1) (2) (3) (4)

¯LCU
USD i

¯LCU
USD i

¯LCU
USD i

¯LCU
USD i

β̂
πres,it ,πres,USt
i 6.523*** 6.094*** 6.019***

(0.896) (1.097) (1.029)

¯kaopeni –0.233 –0.192 –0.796*

(0.347) (0.428) (0.398)

σ
πres,it
i –1.784

(1.479)

Observations 17 17 16 17

R–squared 0.697 0.709 0.664 0.254

Notes: Robust standard errors in parentheses. *, **, *** denote

significance at the 10, 5, and 1% levels respectively. ¯LCU
USD i

is the

mean share of local currency debt obtained from the IIF for each

of the 17 emerging market economies between 2005 Q1 and 2019

Q4. β̂
π
res,i
t ,π

res,US
t

i is the estimated regression coefficient for a linear

regression of residuals of monthly domestic inflation rate from (E.1) on

the residuals of the US inflation rate from (E.2). ¯kaopeni is the mean of

the Chinn–Ito financial openness index for each country (average of the

data available between 1970–2018). σ
π
res,i
t
i is the standard deviation

of the residuals of the monthly domestic inflation rate obtained from

(E.1). In column (3), Hong Kong is excluded since the share of local

currency debt to dollar debt is less than 1.



E.2 Proof of Proposition E.1

We first state the following extension of the Theorem 2.1 for the case of firms borrowing both

in local currency and in dollars.

Theorem E.2 Suppose that q = q($). Then, issuing in a mixture of local currency and dollars is

optimal if and only if

q̄(j, $)

q̄($)
− 1 ≤

Cov$
t

((
Ωt+1

Bt+1(Bt)

)−`
, Ej,t,t+1

)
E$
t

[(
Ωt+1

Bt+1(Bt)

)−`]
E$
t [Ej,t,t+1]

for all j = 1, · · · , N .

Proof of Theorem 2.1 and Proposition E.1. The standard Kuhn–Tucker conditions that bor-

rowing only in LC and dollars is optimal if and only if

Et

[
Mt,t+1

[(
1− (1− ρ)

(
Bt+1(Bt)

Ωt+1

)`)
(1 + c)Ej,t+1

]]
(1− q(j))

+ Et

[
Mt,t+1

[(
−`(1− ρ)

(
Bt+1(Bt)

Ωt+1

)`−1

Ω−1
t+1

)
(1 + c)Ej,t+1

]
Bt+1(Bt)

]
(1− q($))

− (1 + c(1− τ))Et [Mt,t+1Ej,t+1]

+ Et

[
Mt,t+1(`+ 1)

(
Bt+1(Bt)

Ωt+1

)`
(1 + c(1− τ))Ej,t+1

− `
(
Bt+1(Bt)

Ωt+1

)`
(1 + c(1− τ))Ej,t+1

]
≤ 0

for all j with the identity for j = i, $. This inequality can be rewritten as

q̄(j, $)
Et[Mt,t+1Ej,t+1]

Et

[
Mt,t+1

(
Bt+1(Bt)

Ωt+1

)`
Ej,t+1

] ≤ 1 = q̄($)
Et[Mt,t+1E$,i,t+1]

Et

[
Mt,t+1

(
Bt+1(Bt)

Ωt+1

)`
E$,i,t+1

]

and the first claim follows.
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For the LC–$ mixture, we assume for simplicity that ` = 1. Then, we get the system

1 = q̄($)
Et[Mt,t+1E$,i,t+1]

Et

[
Mt,t+1

(
Bt+1(Bt)

Ωt+1

)
E$,i,t+1

]
1 = q̄($)

Et[Mt,t+1]

Et

[
Mt,t+1

(
Bt+1(Bt)

Ωt+1

)]
whereby

Bt+1(Bt) = (1 + c(1− τ)) (Bt + Bt($)E$,i,t+1)

Thus, we get the system

Et[Mt,t+1Ω−1
t+1]Bt + Et[Mt,t+1Ω−1

t+1E$,i,t+1]Bt($) = q̃($)Et[Mt,t+1]

Et[Mt,t+1Ω−1
t+1E$,i,t+1]Bt + Et[Mt,t+1Ω−1

t+1E
2
$,i,t+1]Bt($) = q̃($)Et[Mt,t+1E$,i,t+1]

where we have defined

q̃($) = q̄($)/(1 + c(1− τ)) .

Thus,

(
Bt
Bt($)

)
= q̃($)∆−1

t

 Et[Mt,t+1Ω−1
t+1E2

$,i,t+1] −Et[Mt,t+1Ω−1
t+1E$,i,t+1]

−Et[Mt,t+1Ω−1
t+1E$,i,t+1] Et[Mt,t+1Ω−1

t+1]

( Et[Mt,t+1]

Et[Mt,t+1E$,i,t+1]

)
.

where

∆t = Et[Mt,t+1Ω−1
t+1E

2
$,i,t+1]Et[Mt,t+1Ω−1

t+1]− (Et[Mt,t+1Ω−1
t+1E$,i,t+1])2

Thus,

Bt
Bt($)Et,$,i

=
−Cov$

t (Ω
−1
t+1Et,t+1,$,i, E−1

t,t+1,$,i)

Cov$
t (Ω
−1
t+1, E

−1
t,t+1,$,i)

.

Thus,

Bt
Bt($)Et,$,i

=
−Cov$

t

((
C̄ η̂t+1e

(η−1)ai,t+1P$,t,t+1

)−1
,P−1

i,t,t+1P$,t,t+1

)
Cov$

t

((
C̄ η̂t+1e

(η−1)ai,t+1Pi,t,t+1

)−1
,P−1

i,t,t+1P$,t,t+1

) .
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Let now ãi,t+1 ≡ log(C̄ η̂t+1e
(η−1)ai,t+1)− βã$,t+1 where ã$,t+1 = log(C̄ η̂t+1e

(η−1)a$,t+1) and where β

is such that ãi,t+1 and ã$,t+1 are uncorrelated.

Recall also that we assume that

logPi,t,t+1 = −α̂iã$,t+1 − αiãi,t+1 + εi,t+1, logP$,t,t+1 = −α̃$â$,t+1 + ε$,t+1

where εi,t+1 ∼ N(0, σ2
ε,i). We also allow σε,i,$ ≡ Covt(εi,t+1, ε$,t+1) 6= 0. Then, to the first order

in variance, the measure change is irrelevant and

− Cov$
t

((
C̄ η̂t+1e

(η−1)ai,t+1P$,t,t+1

)−1
,P−1

i,t,t+1P$,t,t+1

)
≈ −Covt(−ãi,t+1 − βã$,t+1 + α$ã$,t+1 − ε$,t+1,−α$ã$,t+1 + ε$,t+1 + αiãi,t+1 + α̂iã$,t+1 − εi,t+1)

whereas

Cov$
t

((
C̄ η̂t+1e

(η−1)ai,t+1Pi,t,t+1

)−1
,P−1

i,t,t+1P$,t,t+1

)
≈ Covt(−ãi,t+1 − βã$,t+1 + αiãi,t+1 + α̂iã$,t+1 − εi,t+1,

− α$ã$,t+1 + ε$,t+1 + αiãi,t+1 + α̂iã$,t+1 − εi,t+1)

In the small variance approximation, we that’s get

Bt
Bt($)Et,$,i

≈
σ2
ε,$ − σε,i,$ + αiσ

2
c + α2

$σ
2
c ($)− (α$ + αiα$)σc(i, $)

σ2
ε,i − σε,i,$ + (1− αi)(α$σc(i, $)− αiσ2

c )

where σ2
c = Vart[log(C̄ η̂t+1e

(η−1)ai,t+1)] and σc(i, $) = Covt[log(C̄ η̂t+1e
(η−1)ai,t+1), log(C̄ η̂t+1e

(η−1)a$,t+1)] .

The claims (monotonicity in σε,i,$ and σ2
ε,i) follow then by direct calculation. Q.E.D.
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