

Discussion of “Testing the Portfolio Rebalancing Channel of Quantitative Easing”

By Julia Selgrad

Discussant: Egemen Eren (BIS)

5th Annual BoE-Imperial-LSE Conference
May 2025

Disclaimer: Views are those of the author and should not be attributed to the BIS.

(How) Does QE Work?

- Multiple channels, but arguably most importantly:
 1. Portfolio rebalancing channel
 - CB buys bonds, lower yields, investors rebalance and shift into other assets.
 2. Signaling channel
 - Signal commitment to maintaining loose MP.
 3. Liquidity channel
 - QE increases the liquidity in the financial system.
- Isolating channels and studying the effects of QE is **HARD**.
- QE is implemented over long horizons. Ideally, we need the time dimension, but:
 - the timing of QE is endogenous to the state of the economy.
 - isolate what is anticipated, what is not.
- Literature mostly focuses on high-frequency event studies.
 - Market expectations, mixes all channels, cannot look at long-term effects

This paper: QE shocks at security, fund and issuer level over time

1. At individual CUSIP-level: $QEShock_{CUSIP,t} = \sum_{o \in t} \frac{Actual_{CUSIP,o} - Predicted_{CUSIP,o}}{Treasury\ Coupons\ Out_t}$
 - Use operational details of QE to construct a security-level shock
 - Show that the shock indeed has impact on Treasury yields
2. At fund-level: $QEShock_{f,t} = \sum_{CUSIP} w_{CUSIP,f,t-1} \times QEShock_{CUSIP,t}$
 - Provide direct evidence on the portfolio rebalancing channel
3. At the issuer-level: $QEShock_{i,t} = \sum_{f \in MF} \frac{Holdings_{f,i,t-1}}{AmountOutstanding_{i,t-1}} \times QEShock_{f,t}$
 - To study issuer-level outcomes, e.g. bond issuance, investment...

A significant contribution: impressive ambition & diligent execution

- **What the paper does:**

- **Local average treatment effects:** how unexpected Fed purchases affect securities, and funds/issuers that are more exposed, *holding policy fixed*
 - **Micro estimates:** *Security-level surprises* around each QE operation
 - **Treatment intensity:** *Cross-sectional* heterogeneity in exposures to surprises
- **Bridge micro to macro in a structural model:**
 - Fund-level own- and cross-asset elasticities and the persistence of price impacts at micro level
 - Embed these in a general equilibrium across all investors

- **What the paper does not do:**

- The paper does not *directly estimate* macro effects of QE
- Identification comes from cross-sectional differences in exposure at the operation date
- No time variation in QE size

This discussion: Three comments on three QE shocks

1. **CUSIP-level shock validation:** isolation of Fed demand shocks from liquidity
2. **Fund level shocks:** make sure to rule out possibly mechanical effects
3. **Issuer level shocks:** mutual funds are relatively small holders of corporate bonds. MF portfolio rebalancing → firm/real outcomes: big leap

Validating CUSIP QE shocks: Fed demand vs liquidity

$$\Delta y_{CUSIP,t-1 \rightarrow t+\tau} = \sum_{\ell=-6}^6 \beta_\ell QEShock_{CUSIP,t} \mathbf{1}\{\tau = \ell\} + \sum_{\ell=-6}^6 \gamma_\ell \mathbf{1}\{\tau = \ell\} + \lambda_{CUSIP} + \lambda_t + \varepsilon_{CUSIP,t,\tau}. \quad (1)$$

- This regression pools all CUSIPs: not all CUSIPs have the same liquidity.
- Possibly conflate Fed demand vs liquidity effects
 - Relative value calculation does not account for liquidity
 - Similar USTs, one is less liquid: lower price due to liquidity premium
 - *Claim:* Illiquid securities disproportionately populate the *predicted* “cheapest 60% by RV”
 - But the Fed, in reality, seems to take this into account (Song and Zhu, 2018). So $Actual_{CUSIP,o} << Predicted_{CUSIP,o}$
 - *Claim:* Liquidity is an omitted variable: Illiquid securities get disproportionately more QE Shocks & their prices move more
 - No pre-trends = market does not front run the Fed, but \neq no liquidity-driven pred. errors

But this would seem to create a bias against validating the shocks...

Suppose the true relationship is:

$$\Delta y = \beta_{\text{true}} QEShock + \gamma_L Liquidity + \epsilon \quad (2)$$

But we estimate

$$\Delta y = \beta_{\text{OLS}} QEShock + \mu \quad (3)$$

By the omitted-variable-bias formula,

$$\beta_{\text{OLS}} = \beta_{\text{true}} + \frac{\text{Cov}(QEShock, Liquidity)}{\text{Var}(QEShock)} \gamma_L.$$

$$\text{Cov}(QEShock, Liquidity) > 0 \quad \text{and} \quad \gamma_L > 0 \quad \Rightarrow \beta_{\text{OLS}} > \beta_{\text{true}}$$

Bottom line: Omitting liquidity would create a bias against finding that shocks are relevant.

Some further suggestions for $QEShock_{CUSIP,t}$

1. Regress $QEShock_{CUSIP,t}$ on liquidity metrics and QE operation variables
Report R^2 . Use the residuals as $QEshock_{CUSIP,t}$. This should improve the results

Some further suggestions for $QEShock_{CUSIP,t}$

1. Regress $QEShock_{CUSIP,t}$ on liquidity metrics and QE operation variables
Report R^2 . Use the residuals as $QEshock_{CUSIP,t}$. This should improve the results
2. Control for liquidity metrics for CUSIPs or add $maturity\ bucket \times time$ FEs
If liquidity is a relevant omitted variable. This should improve the results

Some further suggestions for $QEShock_{CUSIP,t}$

1. Regress $QEShock_{CUSIP,t}$ on liquidity metrics and QE operation variables
Report R^2 . Use the residuals as $QEshock_{CUSIP,t}$. This should improve the results
2. Control for liquidity metrics for CUSIPs or add $maturity\ bucket \times time$ FEs
If liquidity is a relevant omitted variable. This should improve the results
3. Stratify the sample by maturity buckets and redo price impact regressions
Are results similar across different maturities?
Importantly, the estimates for different maturity buckets can be used for a better calibration of the model

Some further suggestions for $QEShock_{CUSIP,t}$

1. Regress $QEShock_{CUSIP,t}$ on liquidity metrics and QE operation variables
Report R^2 . Use the residuals as $QEshock_{CUSIP,t}$. This should improve the results
2. Control for liquidity metrics for CUSIPs or add $maturity\ bucket \times time$ FEs
If liquidity is a relevant omitted variable. This should improve the results
3. Stratify the sample by maturity buckets and redo price impact regressions
Are results similar across different maturities?
Importantly, the estimates for different maturity buckets can be used for a better calibration of the model
4. Need to cluster std errors by operation (by the relevant time dimension)
Every auction affects multiple CUSIPs
Any omitted factors (e.g. a liquidity squeeze, macro announcements, dealer-wide inventory shifts) will induce correlated residuals across all those CUSIPs and overstate the significance of the estimated coefficient

Fund QE shocks: do funds w/ higher share of USTs rebalance more?

- Construct fund-level QE shocks as:

$$QEShock_{f,t} = \sum_{CUSIP} w_{CUSIP,f,t-1} \times QEShock_{CUSIP,t} \quad (4)$$

- Then regress $\Delta Holdings_{f,t}$ on $QEShock_{f,t}$

Fund QE shocks: do funds w/ higher share of USTs rebalance more?

- Construct fund-level QE shocks as:

$$QEShock_{f,t} = \sum_{CUSIP} w_{CUSIP,f,t-1} \times QEShock_{CUSIP,t} \quad (4)$$

- Then regress $\Delta Holdings_{f,t}$ on $QEShock_{f,t}$

Possible omitted variable bias:

- Funds with a larger share of USTs ($\sum_{CUSIP} w_{CUSIP,f,t-1}$) rebalance more.
- $Cov(\sum_{CUSIP} w_{CUSIP,f,t-1}, QEShock_{f,t}) \neq 0$ and
 $Cov(\sum_{CUSIP} w_{CUSIP,f,t-1}, \Delta Holdings_{f,t}) \neq 0$
- Think of the extreme case of uniformly distributed CUSIP-level shocks
- Simple, but important robustness check: Control for $\sum_{CUSIP} w_{CUSIP,f,t-1}$

Issuer-level shocks: From mutual funds to firms is a big leap

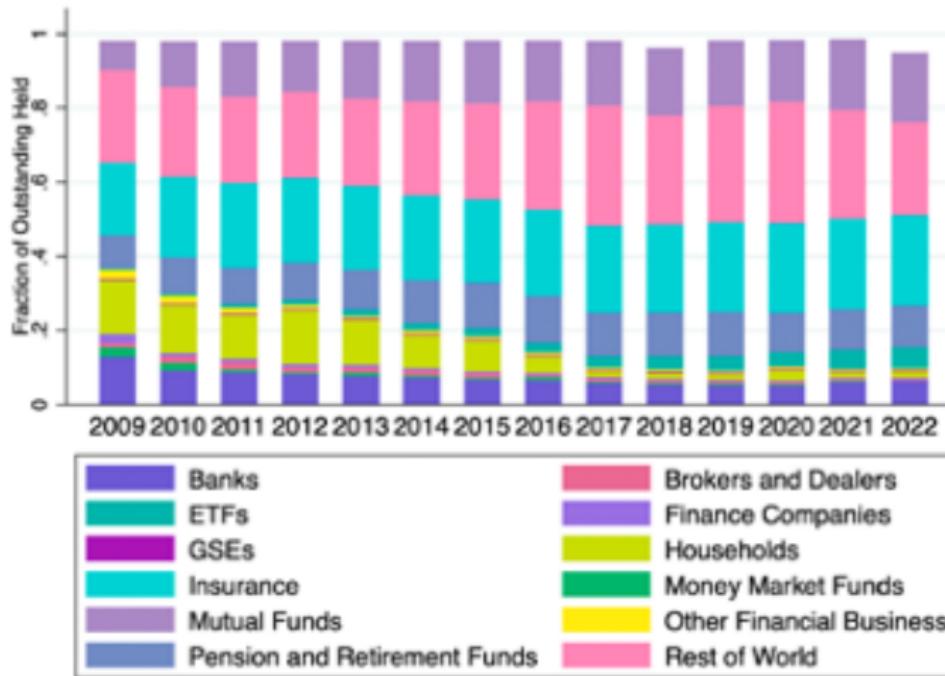


Figure B.2: Fraction of corporate bonds outstanding held, broken down by investor type, between 2009-2022

Measurement error: the issuer-level QEShock

$$\text{QEShock}_{i,t}^{MF} = \sum_{f \in \text{Mutual Fund}} \left(\frac{H_{f,i,t-1}}{A_{i,t-1}} \right) \times \text{QEShock}_{f,t}$$

Measurement error: the issuer-level QEShock

$$\text{QEShock}_{i,t}^{MF} = \sum_{f \in \text{Mutual Fund}} \left(\frac{H_{f,i,t-1}}{A_{i,t-1}} \right) \times \text{QEShock}_{f,t}$$

Case 1: Mutual funds are the only rebalancers, others only add noise (attenuation bias).

$$\text{QEShock}_{i,t}^{true} = \text{QEShock}_{i,t}^{MF} + \eta, \eta \sim \mathcal{N}(0, \sigma^2)$$

Measurement error: the issuer-level QEShock

$$\text{QEShock}_{i,t}^{MF} = \sum_{f \in \text{Mutual Fund}} \left(\frac{H_{f,i,t-1}}{A_{i,t-1}} \right) \times \text{QEShock}_{f,t}$$

Case 1: Mutual funds are the only rebalancers, others only add noise (attenuation bias).

$$\text{QEShock}_{i,t}^{true} = \text{QEShock}_{i,t}^{MF} + \eta, \eta \sim \mathcal{N}(0, \sigma^2)$$

Case 2: Mutual funds are representative rebalancers (amplification bias).

$$\text{QEShock}_{i,t}^{true} = s \times \text{QEShock}_{i,t}^{MF}, \quad s > 1 \quad \text{then} \quad |\beta_{OLS}^{MF}| > |\beta^{true}|$$

Measurement error: the issuer-level QEShock

$$\text{QEShock}_{i,t}^{MF} = \sum_{f \in \text{Mutual Fund}} \left(\frac{H_{f,i,t-1}}{A_{i,t-1}} \right) \times \text{QEShock}_{f,t}$$

Case 1: Mutual funds are the only rebalancers, others only add noise (attenuation bias).

$$\text{QEShock}_{i,t}^{true} = \text{QEShock}_{i,t}^{MF} + \eta, \eta \sim \mathcal{N}(0, \sigma^2)$$

Case 2: Mutual funds are representative rebalancers (amplification bias).

$$\text{QEShock}_{i,t}^{true} = s \times \text{QEShock}_{i,t}^{MF}, \quad s > 1 \quad \text{then} \quad |\beta_{OLS}^{MF}| > |\beta^{true}|$$

Case 3: Other rebalancers matter, their shocks are correlated with MFs and elasticities differ (unknown bias).

$$\text{QEShock}_{i,t}^{true} = \text{QEShock}_{i,t}^{MF} + \text{QEShock}_{i,t}^{PF}$$

Omitted variable bias with an unknown sign: These shocks are likely correlated. Short-run and long-run elasticities of mutual funds and other investors are likely different.

Some suggestions

- Add life insurance holdings to try to gauge the true $QEShock_{i,t}$ better
- Restrict attention to bonds held mostly by MFs

Conclusion: Inspiring paper. It will be very influential.

Academic:

- There are many questions unanswered because identifying the effects of QE is hard.
- A major contribution of this paper:
 - Direct test of an important channel of QE
 - Removes roadblocks and paves the way for future researchers
 - We do not have to limit ourselves to high-frequency studies.
 - There are other ways of cleverly identifying QE effects.

Policy:

- We need to understand QE better if we are to include it as a permanent tool in the monetary policy toolkit.
- This paper is a massive step towards that.